11.03.2024

Типы и характеристики оперативной памяти. Память SDRAM: что мы имеем? Что такое sdram память


Не так давно в разных компьютерных таблицах появились загадочные слова SDRAM и BEDO RAM. Легко догадаться, что относятся они к оперативной памяти (RAM). Появление чего-то нового в этой области интересно уже само по себе, но глядя на приведенную рядом величину времени доступа (10ns вместо 50 - 70 ns для EDO), задаешься вопросом: что же за монстр выполз из подземных лабораторий разработчиков микросхем. Еще больший разброд и шатание в ряды пользователей вносят длинные 168-pin"овые разъемы под память на новых системных платах. Попробую внести некоторую ясность в этот вопрос.

Итак, за аббревиатурой SDRAM скрывается синхронная динамическая оперативная память (synchronous dynamic RAM). Из названия уже можно сделать кое-какие выводы о принципе ее работы. Во-первых, это память динамическая, то есть требует периодического обновления данных и вообще основана на той же технологии, что и современная EDO- и FPM-память (см. "КВ" №38). Во-вторых, это память синхронная, значит, синхронизируется каким-то сигналом. Самый логичный кандидат на эту роль - тактовая частота шины, именно по ней и происходит синхронизация. Возникает законный вопрос: зачем это нужно?

Дело в том, что при частоте шины 66 МГц доступ к той же EDO памяти происходит следующим образом: первый байт считывается за 5 тактов (минимум), последующие байты в той же строке считываются за 2 такта (тоже минимум). Таким образом время на считывание четырех байтов можно представить так: 5-2-2-2 (чтобы заполнить строку кэша, необходимо считать все четыре байта). Очевидно, что процессору приходится некоторое время простаивать. Если же синхронизировать процесс считывания с частотой шины, то получится 5-1-1-1, значит, время простоя будет меньше. В этом и заключается основная идея работы синхронной памяти. Рассмотрим этот процесс подробнее.

Вначале, как всегда, процессор выставляет на шину адреса нужное значение адреса. Дальше оно раскладывается на адрес строки и адрес столбца, которые поочередно подаются на матрицу запоминающих элементов. Адреса строки и столбца подаются на одни и те же контакты микросхемы, поэтому их нельзя передавать одновременно (по той же причине доступ к первому байту занимает больше времени). Дальше начинаются различия: в обычной памяти считывание адресов и управляющих сигналов осуществлялось асинхронно, соответственно, для надежного считывания сигнал должен был иметь определенную длительность. В SDRAM считывание всех сигналов производится по положительному фронту тактового импульса, следовательно проблема их временного согласования решается намного проще.

Далее, на обычную память необходимо было подавать внешний сигнал при считывании каждого байта (значит, операция считывания может занимать несколько тактов). Микросхема SDRAM имеет специальный регистр (Mode Register), с помощью которого задается режим чтения (или записи). После обращения к первому байту сигналы для считывания последующих значений генерируются самой микросхемой каждый такт. Таким образом можно запрограммировать считывание одного, двух, четырех, восьми байт или считывание всей строки матрицы. При таком пакетном режиме (burst mode) работы задержка в несколько тактов будет только между обращением к памяти и первым байтом данных, последующие же байты будут поступать на шину данных каждый такт (см. рис. 1).

Рис.1

Еще одна особенность SDRAM заключается в том, что на одном модуле (DIMM) может находиться несколько (два или четыре) банков памяти. Это позволяет одновременно держать несколько активных строк и осуществлять к ним поочередный доступ. В результате можно получить непрерывный поток данных, поскольку во время подготовки к работе одного банка можно считывать данные из другого (этот метод называется interleaving).

Если пересказать все это простыми словами, то получится, что данная память работает синхронно с шиной, причем, частота шины не обязательно должна быть равна 66 МГц. На самом деле время доступа 10ns, приводимое в качестве параметра SDRAM, представляет собой минимальное время между циклами чтения последовательных байтов (то есть характеризует максимальную частоту шины, с которой может синхронизироваться такая память). 10 наносекунд соответствуют частоте шины 100 МГц. Учитывая стремительный рост скоростей процессоров, такой частоты остается ждать не так уж долго (некоторые материнские платы уже сейчас поддерживают тактовые частоты 75 и 83 МГц).

Память SDRAM целесообразно использовать в многозадачных, многопользовательских системах, поскольку ее быстродействие сравнимо с кэшем второго уровня (соответственно 5-1-1-1 и 2-1-1-1 тактов для шины 66 МГц).

SDRAM выпускается в виде 168 pin"овых модулей DIMM (dual in line memory module). Учтите, что если на системной плате есть такой разъем под память, это еще не значит, что плата поддерживает SDRAM - EDO тоже выпускается в виде 168 контактных DIMM"ов. SDRAM точно поддерживают Intel"овские чипсеты VX и TX, насчет остальных не знаю.

Однако SDRAM не сразу стала стандартом. Первоначально разработки в области синхронной динамической памяти производились многими фирмами, но поскольку Intel упорно поддерживал шинные частоты не выше 66 МГц (83 МГц и сейчас обычно не документируется на системных платах, а 75 МГц официально используется только процессором Cyrix 200+), то работа над памятью, предназначенной для частот до 100 МГц показалась им нерентабельной. Поэтому идеи, заложенные в SDRAM (внутренняя генерация адреса и пакетный режим работы), были использованы в обычной EDO-памяти.

В результате получилась BEDO DRAM (Burst EDO DRAM). В ней применяется внутренний счетчик, позволяющий автоматически генерировать адреса для чтения последующих байтов. Чтение осуществляется пакетами фиксированного размера (4 байта). BEDO DRAM оптимизирована для работы при частоте шины 66 МГц и позволяет добиться времени считывания 5-1-1-1. Соответствующая временная диаграмма приведена на рисунке 2.

Double Data Rate Synchronous Dynamic Random Access Memory - синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) - тип компьютерной памяти , используемой в вычислительной технике в качестве оперативной и видеопамяти. Пришла на смену памяти типа SDRAM .

При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только по фронту , как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200 МГц (при сравнении с аналогом SDR SDRAM). В спецификации JEDEC есть замечание, что использовать термин «МГц» в DDR некорректно, правильно указывать скорость «миллионов передач в секунду через один вывод данных».

Специфическим режимом работы модулей памяти является двухканальный режим.

Описание

Микросхемы памяти DDR SDRAM выпускаются в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

  • Напряжение питания микросхем: 2,6 В +/- 0,1 В
  • Потребляемая мощность: 527 мВт
  • Интерфейс ввода-вывода: SSTL_2

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: (тактовая частота шины памяти ) x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном, они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания, и использование QDS успешно это решает.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Чипы памяти

В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC) их количество кратно 4, для модулей с ECC - формула 4+1.

Спецификация чипов памяти

  • DDR200: память типа DDR SDRAM , работающая на частоте 100 МГц
  • DDR266: память типа DDR SDRAM , работающая на частоте 133 МГц
  • DDR333: память типа DDR SDRAM , работающая на частоте 166 МГц
  • DDR400: память типа DDR SDRAM , работающая на частоте 200 МГц

Характеристики чипов

  • Ёмкость чипа (DRAM density ). Записывается в мегабитах, например, 256 Мбит - чип ёмкостью 32 мегабайта.
  • Организация (DRAM organization ). Записывается в виде 64M x 4, где 64M - это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») - разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт ёмкости, но не позволяют использовать функции Chipkill, memory scrubbing и Intel SDDC.

Модули памяти

Модули DDR SDRAM выполнены в форм-факторе DIMM . На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чип SPD. На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

Характеристики модулей

  • Объём. Указывается в мегабайтах или гигабайтах.
  • Количество чипов (# of DRAM Devices ). Кратно 8 для модулей без ECC , для модулей с ECC - кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество - 36 (9x4).
  • Количество строк (рангов) (# of DRAM rows (ranks) ).

Чипы, как видно из их характеристики, имеют 4- или 8-ми битную шину данных. Чтобы обеспечить более широкую полосу (например, DIMM требует 64 бита и 72 бита для памяти с ECC), чипы связываются в ранги. Ранг памяти имеет общую шину адреса и дополняющие друг друга линии данных. На одном модуле может размещаться несколько рангов. Но если нужно больше памяти, то добавлять ранги можно и дальше, установкой нескольких модулей на одной плате и используя тот же принцип: все ранги сидят на одной шине, только чип селекты разные - у каждого свой. Большое количество рангов электически нагружает шину, точнее контроллер и чипы памяти, и замедляет их работу. Отсюда начали применять многоканальную архитектуру , которая позволяет также независимо обращаться к нескольким модулям.

  • Задержки (тайминги): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

Характеристики модулей и чипов, из которых они состоят, связаны.

Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 9/8, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом, один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.

Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа рангов на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа рангов модуля.

В данном примере сравниваются возможные компоновки модуля серверной памяти объёмом 1 Гб. Из представленных вариантов следует предпочесть первый или третий, так как они используют чипы x4, поддерживающие продвинутые методы исправления ошибок и защиты от сбоев. При необходимости использовать одноранговую память остаётся доступен только третий вариант, однако в зависимости от текущей стоимости чипов объёмом 256 Мбит и 512 Мбит он может оказаться дороже первого.

Спецификация модулей памяти

Спецификация модулей памяти
Спецификация Тактовая частота шины памяти Максимальная теоретическая пропускная способность памяти
в одноканальном режиме в двухканальном режиме
PC1600*
(DDR200)
100 МГц 1600 Мбайт/сек 3200 Мбайт/сек
PC2100*
(DDR266)
133 МГц 2133 Мбайт/сек 4267 Мбайт/сек
PC2400
(DDR300)
150 МГц 2400 Мбайт/сек 4800 Мбайт/сек
PC2700*
(DDR333)
166 МГц 2667 Мбайт/сек 5333 Мбайт/сек
PC3200*
(DDR400)
200 МГц 3200 Мбайт/сек 6400 Мбайт/сек
PC3500
(DDR433)
217 МГц 3467 Мбайт/сек 6933 Мбайт/сек
PC3700
(DDR466)
233 МГц 3733 Мбайт/сек 7467 Мбайт/сек
PC4000
(DDR500)
250 МГц 4000 Мбайт/сек 8000 Мбайт/сек
PC4200
(DDR533)
267 МГц 4267 Мбайт/сек 8533 Мбайт/сек

Примечание 1: стандарты, помеченные символом «*», официально сертифицированы JEDEC. Остальные типы памяти не сертифицированы JEDEC, хотя их и выпускали многие производители памяти, а большинство выпускавшихся в последнее время материнских плат поддерживали данные типы памяти.

Примечание 2: выпускались модули памяти, работающие и на более высоких частотах (до 350 МГц, DDR700), но эти модули не пользовались большим спросом и выпускались в малом объёме, кроме того, они имели высокую цену.

Размеры модулей также стандартизированы JEDEC.

Надо заметить, что нет никакой разницы в архитектуре DDR SDRAM с различными частотами, например, между PC1600 (работает на частоте 100МГц) и PC2100 (работает на частоте 133МГц). Просто стандарт говорит о том, на какой гарантированной частоте работает данный модуль.

Модули памяти DDR SDRAM можно отличить от обычной SDRAM по числу выводов (184 вывода у модулей DDR против 168 выводов у модулей с обычной SDRAM) и по ключу (вырезы в области контактных площадок) - у SDRAM два, у DDR - один. Согласно JEDEC, модули DDR400 работают при напряжении питания 2,6 В, а все более медленные - при напряжении 2,5 В. Некоторые скоростные модули для достижения высоких частот работают при больших напряжениях, до 2,9 В.

Большинство последних чипсетов с поддержкой DDR позволяли использовать модули DDR SDRAM в двухканальном , а некоторые чипсеты и в четырёхканальном режиме. Данный метод позволяет увеличить в 2 или 4 раза соответственно теоретическую пропускную способность шины памяти. Для работы памяти в двухканальном режиме требуется 2 (или 4) модуля памяти, рекомендуется использовать модули, работающие на одной частоте и имеющие одинаковый объём и тайминги (ещё лучше использовать абсолютно одинаковые модули).

Сейчас модули DDR практически вытеснены модулями типов DDR2 и DDR3 , которые в результате некоторых изменений в архитектуре позволяют получить бо́льшую пропускную способность подсистемы памяти. Ранее главным конкурентом DDR SDRAM являлась память типа RDRAM (Rambus), однако ввиду наличия некоторых недостатков со временем была практически вытеснена с рынка.

Примечания

Литература

В. Соломенчук, П. Соломенчук Железо ПК. - 2008. - ISBN 978-5-94157-711-8

Гук М. Ю. Аппаратные средства IBM PC. Энциклопедия. - Питер, 2006. - 1072 с.

Копейкин М. В., Спиридонов В. В., Шумова Е. О. Организация ЭВМ и систем. (Память ЭВМ): Учебн. Пособие. - СПб, 20064. - 153 с.

Ссылки

  • Описание и иллюстрация почти всех параметров памяти DDR (рус.)
  • Intel® Server Board SE7501CW2 Memory List Test Report Summary (PDF, 246,834 bytes) (англ.) - небольшой список возможных конфигураций модуля памяти.
  • Kingston’s Literature Page (англ.) - несколько справочных документов, описывающих организацию модулей памяти.

В отличие от других типов DRAM, использовавших асинхронный обмен данными, ответ на поступивший в устройство управляющий сигнал возвращается не сразу, а лишь при получении следующего тактового сигнала . Тактовые сигналы позволяют организовать работу SDRAM в виде конечного автомата , исполняющего входящие команды. При этом входящие команды могут поступать в виде непрерывного потока, не дожидаясь, пока будет завершено выполнение предыдущих инструкций (конвейерная обработка): сразу после команды записи может поступить следующая команда, не ожидая, когда данные окажутся записаны. Поступление команды чтения приведёт к тому, что на выходе данные появятся спустя некоторое количество тактов - это время называется задержкой (англ. SDRAM latency ) и является одной из важных характеристик данного типа устройств.

Циклы обновления выполняются сразу для целой строки, в отличие от предыдущих типов DRAM , обновлявших данные по внутреннему счётчику, используя способ обновления по команде CAS перед RAS.

История использования

Массовый выпуск SDRAM начался в 1993 году. Первоначально этот тип памяти предлагался в качестве альтернативы для дорогой видеопамяти (VRAM), однако вскоре SDRAM завоевал популярность и стал применяться в качестве ОЗУ, постепенно вытесняя другие типы динамической памяти. Последовавшие затем технологии DDR позволили сделать SDRAM ещё эффективнее. За разработкой DDR SDRAM , последовал стандарт DDR2 SDRAM , а затем и DDR3 SDRAM .

SDR SDRAM

Первый стандарт SDRAM с появлением последующих стандартов стал именоваться SDR (Single Data Rate - в отличие от Double Data Rate). За один такт принималась одна управляющая команда и передавалось одно слово данных. Типичными тактовыми частотами были 66, 100 и 133 МГц. Микросхемы SDRAM выпускались с шинами данных различной ширины (обычно 4, 8 или 16 бит), но как правило, эти микросхемы входили в состав 168-пинного модуля DIMM , который позволял прочитать или записать 64 бита (в варианте без контроля чётности) или 72 бита (с контролем чётности) за один такт.

Использование шины данных в SDRAM оказалось осложнено задержкой в 2 или 3 такта между подачей сигнала чтения и появлением данных на шине данных, тогда как во время записи никакой задержки быть не должно. Потребовалась разработка достаточно сложного контроллера, который не позволял бы использовать шину данных для записи и для чтения в один и тот же момент времени.

Управляющие сигналы

Команды, управляющие модулем памяти SDR SDRAM, подаются на контакты модуля по 7 сигнальным линиям. По одной из них подается тактовый сигнал, передние (нарастающие) фронты которого задают моменты времени, в которые считываются команды управления с остальных 6 командных линий. Имена (в скобках - расшифровки имен) шести командных линий и описания команд приведены ниже:

  • CKE (clock enable) - при низком уровне сигнала блокируется подача тактового сигнала на микросхему. Команды не обрабатываются, состояние других командных линий игнорируется.
  • /CS (chip select) - при высоком уровне сигнала все прочие управляющие линии, кроме CKE, игнорируются. Действует как команда NOP (нет оператора).
  • DQM (data mask) - высокий уровень на этой линии запрещает чтение/запись данных. При одновременно поданной команде записи данные не записываются в DRAM. Присутствие этого сигнала в двух тактах, предшествующих циклу чтения приводит к тому, что данные не считываются из памяти.
  • /RAS (row address strobe) - несмотря на название, это не строб, а всего лишь один командный бит. Вместе с /CAS и /WE кодирует одну из 8 команд.
  • /CAS (column address strobe) - несмотря на название, это не строб, а всего лишь один командный бит. Вместе с /RAS и /WE кодирует одну из 8 команд.
  • /WE (write enable) - Вместе с /RAS и /CAS кодирует одну из 8 команд.

Устройства SDRAM внутренне разделены на 2 или 4 независимых банка памяти. Входы адреса первого и второго банка памяти (BA0 и BA1) определяют, какому банку предназначена текущая команда.

Принимаются следующие команды:

/CS /RAS /CAS /WE BAn A10 An Команда
В x x x x x x задержка команды (нет операции)
Н В В В x x x нет операции
Н В В Н x x x остановить текущую операцию пакетного чтения или записи.
Н В Н В № банка Н № столбца считать пакет данных из активного в данный момент ряда.
Н В Н В № банка В № столбца
Н В Н Н № банка Н № столбца записать пакет данных в активный в данный момент ряд.
Н В Н Н № банка В № столбца как и предыдущая команда, а по завершении команды регенерировать и закрыть этот ряд.
Н Н В В № банка № ряда открыть ряд для операций записи и чтения.
Н Н В Н № банка Н x деактивировать текущий ряд выбранного банка.
Н Н В Н x В x деактивировать текущий ряд всех банков.
Н Н Н В x x x регенерировать по одному ряду каждого из банков, используя внутренний счётчик. Все банки должны быть деактивированы.
Н Н Н Н 0 0 РЕЖИМ с линий A0-A9 загрузить в микросхему параметры конфигурирования.
Наиболее важные - CAS latency (2 или 3 такта) и длина пакета (1, 2, 4 или 8 тактов)

Примеры

Ссылки


Wikimedia Foundation . 2010 .

  • Ванна (значения)
  • Дискография ВИА «Песняры»

Смотреть что такое "SDRAM" в других словарях:

    SDRAM - Saltar a navegación, búsqueda Memoria SDRAM. Synchronous dynamic random access memory (SDRAM) es la dynamic random access memory (DRAM) que tiene una interfaz sincrónico. Tradicionalmente, la memoria dinámica de acceso aleatorio (DRAM) tiene una… … Wikipedia Español

    SDRAM - refers to synchronous dynamic random access memory, a term that is used to describe dynamic random access memory that has a synchronous interface. Traditionally, dynamic random access memory (DRAM) has an asynchronous interface which means that… … Wikipedia

    SDRAM - Modul SDRAM Speichermodule auf einer Hauptplatine SDRAM ist die Abkürzung für „Synchronous Dynamic Random Access Memory“, eine Art des … Deutsch Wikipedia

    SDRAM - , neuere, besonders schnell arbeitende Variante von DRAM Speicher Chips (DRAM) mit Zugriffzeiten von 7 12 ns. SDRAM Chips werden… … Universal-Lexikon

    SDRAM - (Synchronous Dynamic Random Access Memory) Random Access Memory that can be adjusted and synchronized with the speed of the computer clock … English contemporary dictionary

    SDRAM - Sigles d’une seule lettre Sigles de deux lettres Sigles de trois lettres Sigles de quatre lettres > Sigles de cinq lettres Sigles de six lettres Sigles de sept… … Wikipédia en Français

Что такое SDRAM?

Синхронная оперативная память (SDRAM) - это первая технология оперативной памяти со случайным доступом (DRAM) разработанная для синхронизации работы памяти с тактами работы центрального процессора с внешней шиной данных. SDRAM основана на основе стандартной DRAM и работает почти также, как стандартная DRAM, но она имеет несколько отличительных характеристик, которые и делают ее более прогрессивной:

Синхронная работа SDRAM в отличие от стандартной и асинхронной DRAMs, имеет таймер ввода данных, таким образом системный таймер, который пошагово контролирует деятельность микропроцессора, может также управлять работой SDRAM. Это означает, что контроллер памяти знает точный цикл таймера на котором запрошенные данные будут обработаны. В результате, это освобождает процессор от необходимости находится в состоянии ожидания между моментами доступа к памяти.

Общие свойства SDRAM

  • Синхронизированна по тактам с CPU
  • Основана на стандартной DRAM, но значительно быстрее - вплоть до 4 раз
  • Специфические свойства:
    синхронное функционирование,
    чередование банков ячеек,
    возможность работы в пакетно-конвейерном режиме
  • Основной претендент для использования в качестве основной памяти в персональных компьютерах следующего поколения

Банки ячеек - это ячейки памяти внтри чипа SDRAM, которые разделяются на два, независимых банка ячеек. Поскольку оба банка могут быть задействованны одновременно, непрерывный поток данных может обеспечиваться простым переключением между банками. Этот метод называется чередованием, и он позволяет снизить общее количество циклов обращения к памяти и увеличить, в результате, скорость передачи данных. пакетный режим ускорения - это техника быстрой передачи данных, при которой автоматически генерируется блок данных (серия последовательных адресов), в каждый момент, когда процессор запрашивает один адрес. Исходя из предположения о том, что адрес следующих данных, которые будут запрошенных процессором, будет следующим, по отношению к предыдущему запрошенному адресу, который обычно истиный (это такое же предсказание, которое используется в алгоритме работы кэш-памяти). Пакетный режим может применятся как при операциях чтения (из памяти), так и при операциях записи (в память).

Теперь о фразе, что SDRAM более быстрая память. Даже при том, что SDRAM основана на стандартной DRAM архитектуре, комбинация указанных выше трех характеристик позволяет получит более быстрый и более эффективный процесс передачи данных. SDRAM уже может передавать данные со скоростью вплоть до 100MHz, что почти в четыре раза быстрее работы стандартной DRAM. Это ставит SDRAM в один ряд с более дорогой SRAM (статическое ОЗУ) используемой в качестве внешней кэш-памяти.

Почему именно SDRAM?

Поскольку оперативная память компьютера хранит в себе информацию, которая требуется CPU для функционирования, время прохождения данных между CPU и памятью является критичным. Более быстрый процессор может увеличить производительность системы только, если он не попадает в состояние цикла "поторопись и подожди", в то время, как остальная часть системы борется за то, чтобы оставаться в этом состоянии. К несчастью, с тех пор, как Intel представила пятнадцать лет тому назад свой процессор x286, обычные микросхемы памяти больше не в состоянии идти в ногу с чрезвычайно возросшей производительностью процессоров.

Стандартная, асинхронная DRAM работае без управления ввода таймером, который не требовался для передачи данных вплоть до второго десятилетия развития микропроцессоров. Начиная с этого момента, в системах с более быстрыми процессорами, которые используют стандартную DRAM необходимо принудительно устанавливать состояния ожидания (временные задержки), чтобы избежать переполнения памяти.Состояние ожидания, это когда микропроцессор приостанавливает исполнение всего, что он делает, пока другие компоненты не перейдут в режим приема команд.По этой причине, новые технологии памяти внедряются не только с целью увеличения скорости обмена, но также и с целью сокращения цикла поиска и выборки данных. Перед лицом возникших требований, изготовителями микросхем памяти были представлены серии новшеств, включающие память страничного режима, статического столбца, чередующиюся память, и FPM DRAM (быстространичного режима). Когда скорости процессоров возросли до частот 100MHz и выше, разработчики систем предложили для использования небольшой высокоскоростной внешний кэш SRAM (кэш второго уровня), а также новую быстродействующую память тиа EDO (расширенный доступ к данным) и BEDO (пакетно-расширенный доступ). FPM DRAM И EDO DRAM наиболее часто применяемая памяти в современных PC, но их асинхронная электрическая схема не предназначена для скоростей более 66MHz (максимум для BEDO). К несчастью, это фактор ограничивает сегодняшние системы, на основе процессоров типа Pentium с тактовой частотой более 133MHz, частотой по шине памяти величиной в 66MHz.

Появление SDRAM.

Первоначально, SDRAM была предложена в качестве более дешевой по стоимщсти альтернативы для дорогой видеопамяти VRAM (Video RAM), используемой в графических подсистемах. Тем не менее, она быстро получила применение во многих приложения и стала кандидатом номер один на роль основной памяти для следующих поколений PC.

Как работает SDRAM?

SDRAM производится на основе стандартной DRAM и работает также, как стандартная DRAM - осуществляя доступ с строкам и колонкам ячеек данных. Только SDRAM объединяет свои специфичные свойства синхронного функционирования банков ячеек, и пакетной работы, для эффективного устранения состояний задержек-ожидания. Когда процессору необходимо получить данные из оперативной памяти, он может получить их в требуемый момент. Таким образом, фактическое время обработки данных непосредственно не изменилось, в отличии от увеличения эффективности выборки и передачи данных. Для того, чтобы понять как SDRAM ускоряет процесс выборки и поиска данных в памяти, представьте себе, что центральный процессор имеет посыльного, который возит тележку по зданию оперативной памяти, и каждый раз ему нужно бросать или подбирать информацию. В здании оперативной памяти клерк, отвечающий за пересылку/получение информации, обычно тратит около 60ns, чтобы обработать запрос. Посыльный знает только, сколько требуется времени, чтобы обработать запрос, после того, как он получен. Но он не знает будет ли готов клерк, когда он приедет к нему, так что обычно он отводит немного времени на случай ошибки. Он ждет, пока клерк не будет готов получить запрос. Затем он ожидает обычное время, требующееся для обработки запроса. А затем, он задерживается, чтобы проверить, что запрошенные данные загружены в его тележку, прежде, чем отвезти тележку с данными обратно центральному процессору. Предположим, с другой стороны, что каждые 10 наносекунд пресылающий клерк в здании оперативной памяти должны быть снаружи и готовым получить другой запрос или ответить на запрос, который был получен ранее. Это делает процесс более эффективным, поскольку посыльный может прибыть именно в нужное время. Обработка запроса начинается в момент его получени. Информация посылается в CPU, когда она готова.

Какие преимущества в производительности?

Время доступа (комманды по адресу до выбора данных) одинаково для всех типов памяти, как видно из таблицы выше, поскольку их внутренняя архитектура в основном одинакова. Более показательным параметром является время цикла, который показывает, насколько быстро можгут быть осуществлены два последовательных доступа в чипе. Первый цикл считывания одинаков для всех четырех типов памяти - 50ns, 60ns или 70ns. Но реальные различия можно увидеть, посмотрев как быстро осуществляется второй, третий, четвертый, и т.д. цикл считывания. Для этого мы посмотрим на время цикла. Для "-6" FPM DRAM (60ns), второй цикл может быть осуществлен за 35ns. Сравните это с "-12" SDRAM (время доступа 60ns), когда второй цикл считывания проходит за 12ns. Это в три раза быстрее, и при этом, без какой-либо значительной переделки системы!

Наиболее значимые улучшения производительностьи при использовании SDRAM:

  • Более быстрая и более эффективная - почти в четыре раза производительнее, чем стандартная DRAM
  • Потенциально может заменить более дорогостоящую в использовании комбинацию EDO/L2-кэш, являюшуюся сейчас стандартом
  • "При синхронном" функционировании - избавляет от ограничений по времени и не тормозит работу новейших процессоров
  • Внутреннее чередование операций с двойными банками способствует непрерывному потоку данных
  • Возможность пакетного режима работы вплоть до полной страницы (используя до х16 микросхем)
  • Конвейерная адресация позволяет осуществлять доступ к запрошенным вторыми данными, до завершения обработки запрошенных первыми данными

Каково место SDRAM среди будущей памяти PC?

В настоящее время, FPM DRAM и EDO DRAM составляют большинство основного потока памяти PC, но ожидается, что SDRAM быстро станет основной альтернативой стандартной DRAM. Модернизация с FPM памяти до EDO (плюс L2-кэш) увеличивает производительность на 50%, а модернизируя с EDO до BEDO или SDRAM обеспечивает дополнительный прирост производительности еще на 50%. Все-таки, многие поставщики готовых систем видят BEDO лишь как промежуточный этап между EDO и SDRAM из-за присущих BEDO ограничений по скорости. SDRAM, которую они ожидают будет основной памятью при выборе.

Текущие потребности исходят от приложений с интенсивной графикой и требующих больших вычислений, таких, как малтимедиа, серверы, digital set-top boxex (системы для домашнего использования, совмещающие в себе телевизор, музыкальный центр, веб-броузер и т.д.), коммутаторы ATM, и другое сетевое и коммуникационное оборудование, требующие высокой пропускной способности и скоротей передачи данных. В недалеком будущем, тем не менее, промышленные эксперты прогнозируют, что SDRAM станет новым стандартом памяти в персональных компьютерах.

Следующий шаг в развитии SDRAM уже сделан, это DDR SDRAM или SDRAM II

И сделала этот шаг компания Samsung, известная как крупнейший производитель чипов памяти с маркировкой SEC. Официально о выпуске новой памяти будет объявлено в ближайшее время, но уже известны некоторые подробности. Имя новой памяти "Double Data Rate SDRAM" или просто "SDRAM II". Соль в том, что новая синхронная память может передавать данные по восходящему и падающиму уровню сигнала шины, что позволяет увеличить пропускную способность до 1.6 Гб/сек при частоте шины в 100MHz. Это позволит увеличить вдвое пропускную способность памяти по сравнению с существующей SDRAM. Заявлено, что новый чипсет VIA VP3 будет обеспечивать возможность использования новой памяти в системах.

Будте осторожны при выборе SDRAM для применения в системах на основе чипсета i440LX

Как показала практика, материнские платы, сделанные на основе последнего чипсета i440LX очень чувствительно относятся к типу применямой памяти SDRAM. Это связано с тем, что новая спецификация Intel SPD для SDRAM, определяет дополнительные требования к содержанию специальной информации о используемом модуле DIMM, которая должна находиться в маленьком по объемам и размерам элементе электронно-программируемой памяти EPROM, располагающейся на самом модуле памяти. Однако это не означает, что любой модуль SDRAM имеющий на себе EPROM, соответствует спецификации SPD, но в частности, это означает что модуль без EPROM этой спецификации точно не соответствует. Некоторые платы на базе набора i440LX требуют для работы только такие специальные модули, однако большинство существующих прекрасно функционируют и с обычными модулями SDRAM. Данный шаг Intel, по введения стандарта на модули синхронной памяти, связан, прежде всего, со стремлением обеспечить надежную работу и совместимость памяти с будущим чипсетом i440BX, который уже будет поддерживать шинную частоту в 100MHz.


© 2024
slushat-audioskazki.ru - Компьютерные подсказки - Это полезно знать