03.05.2023

Интерфейс подключения ide. Что такое SATA


Здравствуйте уважаемые друзья! С Вами Артём Ющенко.

Стандарт SATA1 – имеет скорость передачи до 150мб/c
Стандарт SATA2 – имеет скорость передачи до 300мб/c
Стандарт SATA3 – имеет скорость передачи до 600мб/c
Меня часто спрашивают, почему, когда я тестирую скорость своего диска (а диск, например интерфейс SATA2 и материнская плата имеет порт этого же стандарта), то скорость далека от 300мб/c и, причем не в большую сторону.

На самом деле скорость диска даже стандарта SATA1 не превышает 75Мб/c. Его скорость, как правило, ограничивают механические части. Такие как скорость вращения шпинделя (7200 в минуту для домашних компьютеров), и также количество пластин в диске. Чем их больше, тем больше будут задержки в записи и чтении данных.

Поэтому, по сути, неважно какой интерфейс традиционного жёсткого диска вы используете, скорость не превысит 85 Мб/c.

Однако я не рекомендую использовать в современном компьютеры диски стандарта IDE потому как они уже достаточно медленнее SATA2. Это скажется на производительности записи и чтения данных, а значит, будет дискомфорт в работе с большими объёмами данных.
Недавно появился новый стандарт SATA3, который будет актуален для дисков на основе твердотельной памяти. О них мы ещё с вами поговорим.
Однако ясно одно современные традиционные диски SATA, из за своих механических ограничений ещё даже не выработали стандарт SATA1, а появился уже SATA3. То есть порт то обеспечивает скорость но не диск.
Однако каждый новый стандарт SATA всё же несёт некие доработки, и при больших объёмах информации они дадут о себе знать в хорошем качестве.

Например постоянно дорабатывается функция – Native Command Queuing (NCQ)специальная команда, которая позволяет распараллеливать команды записи чтения, для большей производительности, чем интерфейс SATA1 и IDE похвастать не могут.
Самое примечательно что стандарт SATA, а точнее его версии совместимы друг с другом, что даёт нам денежную экономию. То есть например диск SATA1 можно подключить к материнской плате с разъёмом стандарта SATA2 и SATA3 и наоборот.
Не так давно стал развиваться рынок новых накопителей, так называемых SSD (напомню традиционные жёсткие диски обозначаются как HDD).

SSD – это не что иное как флеш память (не путать с флешками, SSD скоростнее обычных флешек в десятки раз). Эти диски не шумят, мало греются и мало потребляют энергии. Они поддерживают скорость чтения до 270Мб/c и скорость записи до 250-260 Мб/c. Однако они очень дороги. Диск размером 256 Гб может, стоит до 30000 рублей. Однако цены по мере развития рынка флеш памяти будут постепенно падать.
Однако очень приятна перспектива покупки SSD например на 64Гб, ведь он намного быстрее работает чем обычный диск на магнитных пластинах, а значит на него можно установить систему и получить прирост в производительности при загрузке операционной системы и при работе с компьютером. Такой диск стоит порядка 5 – 6 тысяч рублей. Сам задумываюсь о такой покупке.

Вот такие диски полностью раскрывают стандарты SATA2 и новый интерфейс SATA 3 им нужен как воздух, нежели традиционным дискам. В ближайшее пол года диски SSD переберутся на стандарт SATA3 и смогут демонстрировать скорости до 560 мб/c на операциях чтения.
Не так давно мне в руки попал диск стандарта IDE размером 40гб и выпущенным больше 7 и лет назад (не мой, сдавали на ремонт мне) Я протестировал его скоростные характеристики и сравнил их со стандартами SATA1 и SATA2, так как я сам обладаю дисками обоих SATA стандартов.

Замеры проводились с помощь программы Crystal Disk Mark, нескольких версий. Я выяснил, что точность замеров от одной версии программы к другой, практически не зависит. На компьютере установлена 32 битная операционная система Windows 7 Максимальная и процессор Pentium 4 – 3 ГГц. Также тесты были проведены на процессоре уже с двумя ядрами Core 2 Duo E7500 разогнанного до тактовой частоты 3,53 Ггц. (штатная частота 2,93 ГГц). На результаты скорости чтения и записи данных скорость процессора по моим наблюдениям не влияет.

Вот как выглядеть старый добрый диск IDE, диски этого стандарта ещё продаются.

Вот так подключается IDE диск. Широкий шлейф, для передачи данных. Узкий белый – питание.

А вот так выглядит подключение SATA дисков – красные провода передачи данных. И также на фотке виднеется шлейф IDE который подключается к своему разъему.

Результаты скоростей:

Скорость стандарта IDE. Она равна 41 мб для записи и столько же для чтения данных. Далее идут строчки по чтению секторов различного размера в разнооброс.

Скорость чтения и записи SATA1. 50 и 49 мб для скорости чтения и записи соответственно.

Скорость чтения и записи для SATA2. 75 и 74 мб для чтения и записи соответственно.

И ещё на последок покажу результаты тестирования одной из мох флешек на 4 Гб отличнейшей компании Transcend. Для флеш памяти результат неплохой:

Вывод: Интерфейсы SATA1 и SATA2 (занявший первое место по результатам теста) наиболее предпочтительны для использования в настольном домашнем компьютере.

С Уважением Артём Ющенко.

В этой статье речь пойдет о том, что позволяет подключить жесткий диск к компьютеру, а именно, об интерфейсе жесткого диска. Точнее говорить, об интерфейсах жестких дисков, потому что технологий для подключения этих устройств за все время их существования было изобретено великое множество, и обилие стандартов в данной области может привести в замешательство неискушенного пользователя. Впрочем, обо все по порядку.

Интерфейсы жестких дисков (или строго говоря, интерфейсы внешних накопителей, поскольку в их качестве могут выступать не только , но и другие типы накопителей, например, приводы для оптических дисков) предназначены для обмена информацией между этими устройствами внешней памяти и материнской платой. Интерфейсы жестких дисков, не в меньшей степени, чем физические параметры накопителей, влияют на многие рабочие характеристики накопителей и на их производительность. В частности, интерфейсы накопителей определяют такие их параметры, как скорость обмена данными между жестким диском и материнской платой, количество устройств, которые можно подключить к компьютеру, возможность создания дисковых массивов, возможность горячего подключения, поддержка технологий NCQ и AHCI, и.т.д. Также от интерфейса жесткого диска зависит, какой кабель, шнур или переходник для его подключения к материнской плате вам потребуется.

SCSI - Small Computer System Interface

Интерфейс SCSI является одним из самых старых интерфейсов, разработанных для подключения накопителей в персональных компьютерах. Появился данный стандарт еще в начале 1980-х гг. Одним из его разработчиков был Алан Шугарт, также известный, как изобретатель дисководов для гибких дисков.

Внешний вид интерфейса SCSI на плате и кабеля подключения к нему

Стандарт SCSI (традиционно данная аббревиатура читается в русской транскрипции как «скази») первоначально предназначался для использования в персональных компьютерах, о чем свидетельствует даже само название формата – Small Computer System Interface, или системный интерфейс для небольших компьютеров. Однако так получилось, что накопители данного типа применялись в основном в персональных компьютерах топ-класса, а впоследствии и в серверах. Связано это было с тем, что, несмотря на удачную архитектуру и широкий набор команд, техническая реализация интерфейса была довольно сложна, и не подходила по стоимости для массовых ПК.

Тем не менее, данный стандарт обладал рядом возможностей, недоступных для прочих типов интерфейсов. Например, шнур для подключения устройств Small Computer System Interface может иметь максимальную длину в 12 м, а скорость передачи данных – 640 МБ/c.

Как и появившийся несколько позже интерфейс IDE, интерфейс SCSI является параллельным. Это означает, что в интерфейсе применяются шины, передающие информацию по нескольким проводникам. Данная особенность являлась одним из сдерживающих факторов для развития стандарта, и поэтому в качестве его замены был разработан более совершенный, последовательный стандарт SAS (от Serial Attached SCSI).

SAS - Serial Attached SCSI

Так выглядит интерфейс SAS серверного диска

Serial Attached SCSI разрабатывался в усовершенствования достаточно старого интерфейса подключения жестких дисков Small Computers System Interface. Несмотря на то, что Serial Attached SCSI использует основные достоинства своего предшественника, тем не менее, у него есть немало преимуществ. Среди них стоит отметить следующие:

  • Использование общей шины всеми устройствами.
  • Последовательный протокол передачи данных, используемый SAS, позволяет задействовать меньшее количество сигнальных линий.
  • Отсутствует необходимость в терминации шины.
  • Практически неограниченное число подключаемых устройств.
  • Более высокая пропускная способность (до 12 Гбит/c). В будущих реализациях протокола SAS предполагается поддерживать скорость обмена данными до 24 Гбит/c.
  • Возможность подключения к контроллеру SAS накопителей с интерфейсом Serial ATA.

Как правило, системы Serial Attached SCSI строятся на основе нескольких компонентов. В число основных компонентов входят:

  • Целевые устройства. В эту категорию включают собственно накопители или дисковые массивы.
  • Инициаторы – микросхемы, предназначенные для генерации запросов к целевым устройствам.
  • Система доставки данных – кабели, соединяющие целевые устройства и инициаторы

Разъемы Serial Attached SCSI могут иметь различную форму и размер, в зависимости от типа (внешний или внутренний) и от версий SAS. Ниже представлены внутренний разъем SFF-8482 и внешний разъем SFF-8644, разработанный для SAS-3:

Слева - внутренний разъём SAS SFF-8482; Справа - внешний разъём SAS SFF-8644 с кабелем.

Несколько примеров внешнего вида шнуров и переходников SAS: шнур HD-Mini SAS и шнур-переходник SAS-Serial ATA.

Слева - шнур HD Mini SAS; Справа - переходной шнур с SAS на Serial ATA

Firewire - IEEE 1394

Сегодня достаточно часто можно встретить жесткие диски с интерфейсом Firewire. Хотя через интерфейс Firewire к компьютеру можно подключить любые типы периферийных устройств, и его нельзя назвать специализированным интерфейсом, предназначенным для подключения исключительно жестких дисков, тем не менее, Firewire имеет ряд особенностей, которые делают его чрезвычайно удобным для этой цели.

FireWire - IEEE 1394 - вид на ноутбуке

Интерфейс Firewire был разработан в середине 1990-х гг. Начало разработке положила небезызвестная фирма Apple, нуждавшаяся в собственной, отличной от USB, шине для подключения периферийного оборудования, прежде всего мультимедийного. Спецификация, описывающая работу шины Firewire, получила название IEEE 1394.

На сегодняшний день Firewire представляет собой один из наиболее часто используемых форматов высокоскоростной последовательной внешней шины. К основным особенностям стандарта можно отнести:

  • Возможность горячего подключения устройств.
  • Открытая архитектура шины.
  • Гибкая топология подключения устройств.
  • Меняющаяся в широких пределах скорость передачи данных – от 100 до 3200 Мбит/c.
  • Возможность передачи данных между устройствами без участия компьютера.
  • Возможность организации локальных сетей при помощи шины.
  • Передача питания по шине.
  • Большое количество подключаемых устройств (до 63).

Для подключения винчестеров (обычно посредством внешних корпусов для жестких дисков) через шину Firewire, как правило, используется специальный стандарт SBP-2, использующий набор команд протокола Small Computers System Interface. Существует возможность подключения устройств Firewire к обычному разъему USB, но для этого требуется специальный переходник.

IDE - Integrated Drive Electronics

Аббревиатура IDE, несомненно, известна большинству пользователей персональных компьютеров. Стандарт интерфейса для подключения жестких дисков IDE был разработан известной фирмой, производящей жесткие диски – Western Digital. Преимуществом IDE по сравнению с другими существовавшими в то время интерфейсами, в частности, интерфейсом Small Computers System Interface, а также стандартом ST-506, было отсутствие необходимости устанавливать контроллер жесткого диска на материнскую плату. Стандарт IDE подразумевал установку контроллера привода на корпус самого накопителя, а на материнской плате оставался лишь хост-адаптер интерфейса для подключения приводов IDE.

Интерфейс IDE на материнской плате

Данное нововведение позволило улучшить параметры работы накопителя IDE благодаря тому, что сократилось расстояние между контроллером и самим накопителем. Кроме того, установка контроллера IDE внутрь корпуса жесткого диска позволила несколько упростить как материнские платы, так и производство самих винчестеров, поскольку технология давала свободу производителям в плане оптимальной организации логики работы накопителя.

Новая технология первоначально получила название Integrated Drive Electronics (Встроенная в накопитель электроника). Впоследствии был разработан описывающий ее стандарт, названный ATA. Это название происходит от последней части названия семейства компьютеров PC/AT посредством добавления слова Attachment.

Для подключения жесткого диска или другого устройства, например, накопителя для оптических дисков, поддерживающего технологию Integrated Drive Electronics, к материнской плате, используется специальный кабель IDE. Поскольку ATA относится к параллельным интерфейсам (поэтому его также называют Parallel ATA или PATA), то есть, интерфейсам, предусматривающим одновременную передачу данных по нескольким линиям, то его кабель данных имеет большое количество проводников (обычно 40, а в последних версиях протокола имелась возможность использовать 80-жильный кабель). Обычный кабель данных для данного стандарта имеет плоский и широкий вид, но встречаются и кабели круглого сечения. Кабель питания для накопителей Parallel ATA имеет 4-контактный разъем и подсоединен к блоку питания компьютера.

Ниже приведены примеры кабеля IDE и круглого шнура данных PATA:

Внешний вид интерфейсного кабеля: cлева - плоский, справа в круглой оплетке - PATA или IDE.

Благодаря сравнительной дешевизне накопителей Parallel ATA, простоте реализации интерфейса на материнской плате, а также простоте установки и конфигурации устройств PATA для пользователя, накопители типа Integrated Drive Electronics на длительное время вытеснили с рынка винчестеров для персональных компьютеров бюджетного уровня устройства других типов интерфейса.

Однако стандарт PATA имеет и ряд недостатков. Прежде всего, это ограничение по длине, которую может иметь кабель данных Parallel ATA – не более 0,5 м. Кроме того, параллельная организация интерфейса накладывает ряд ограничений на максимальную скорость передачи данных. Не поддерживает стандарт PATA и многие расширенные возможности, которые имеются у других типов интерфейсов, например, горячее подключение устройств.

SATA - Serial ATA

Вид интерфейса SATA на материнской плате

Интерфейс SATA (Serial ATA), как можно догадаться из названия, является усовершенствованием ATA. Заключается это усовершенствование, прежде всего, в переделке традиционного параллельного ATA (Parallel ATA) в последовательный интерфейс. Однако этим отличия стандарта Serial ATA от традиционного не ограничиваются. Помимо изменения типа передачи данных с параллельного на последовательный, изменились также разъемы для передачи данных и электропитания.

Ниже приведен шнур данных SATA:

Шнур передачи данных для SATA интерфейса

Это позволило использовать шнур значительно большей длины и увеличить скорость передачи данных. Однако минусом стало то обстоятельство, что устройства PATA, которые до появления SATA присутствовали на рынке в огромных количествах, стало невозможно напрямую подключить в новые разъемы. Правда, большинство новых материнских плат все же имеют старые разъемы и поддерживают подключение старых устройств. Однако обратная операция – подключение накопителя нового типа к старой материнской плате обычно вызывает куда больше проблем. Для этой операции пользователю обычно требуется переходник Serial ATA to PATA. Переходник для кабеля питания обычно имеет сравнительно простую конструкцию.

Переходник питания Serial ATA to PATA:

Слева общий вид кабеля; Cправа укрупнено внешний вид коннекторов PATA и Serial ATA

Сложнее, однако, дело обстоит с таким устройством, как переходник для подключения устройства последовательного интерфейса в разъем для параллельного интерфейса. Обычно переходник такого типа выполнен в виде небольшой микросхемы.

Внешний вид универсального двунаправленного переходника между интерфейсами SATA - IDE

В настоящее время интерфейс Serial ATA практически вытеснил Parallel ATA, и накопители PATA можно встретить теперь в основном лишь в достаточно старых компьютерах. Еще одной особенностью нового стандарта, обеспечившей его широкую популярность, стала поддержка .

Вид переходника с IDE на SATA

О технологии NCQ можно рассказать чуть подробнее. Основное преимущество NCQ состоит в том, что она позволяет использовать идеи, которые давно были реализованы в протоколе SCSI. В частности, NCQ поддерживает систему упорядочивания операций чтения/записи, поступающих к нескольким накопителям, установленным в системе. Таким образом, NCQ способна значительно повысить производительность работы накопителей, в особенности массивов жестких дисков.

Вид переходника с SATA на IDE

Для использования NCQ необходима поддержка технологии со стороны жесткого диска, а также хост-адаптера материнской платы. Практически все адаптеры, поддерживающие AHCI, поддерживают и NCQ. Кроме того, NCQ поддерживают и некоторые старые проприетарные адаптеры. Также для работы NCQ требуется ее поддержка со стороны операционной системы.

eSATA - External SATA

Отдельно стоит упомянуть о казавшемся многообещающим в свое время, но так и не получившем широкого распространения формате eSATA (External SATA). Как можно догадаться из названия, eSATA представляет собой разновидность Serial ATA, предназначенную для подключения исключительно внешних накопителей. Стандарт eSATA предлагает для внешних устройств большую часть возможностей стандартного, т.е. внутреннего Serial ATA, в частности, одинаковую систему сигналов и команд и столь же высокую скорость.

Разъем eSATA на ноутбуке

Тем не менее, у eSATA есть и некоторые отличия от породившего его стандарта внутренней шины. В частности, eSATA поддерживает более длинный кабель данных (до 2 м), а также имеет более высокие требования к питанию накопителей. Кроме того, разъемы eSATA несколько отличаются от стандартных разъемов Serial ATA.

По сравнению с другими внешними шинами, такими, как USB и Firewire, eSATA, однако, имеет один существенный недостаток. Если эти шины позволяют осуществлять электропитание устройства через сам кабель шины, то накопитель eSATA требует специальные разъемы для питания. Поэтому, несмотря на сравнительно высокую скорость передачи данных, eSATA в настоящее время не пользуется большой популярностью в качестве интерфейса для подключения внешних накопителей.

Заключение

Информация, хранящаяся на жестком диске, не может стать полезной для пользователя и доступной для прикладных программ до тех пор, пока к ней не получит доступ центральный процессор компьютера. Интерфейсы жестких дисков представляют собой средство для связи между этими накопителями и материнской платой. На сегодняшний день существует немало различных типов интерфейсов жестких дисков, каждый из которых имеет свои достоинства, недостатки и характерные особенности. Надеемся, что приведенная в данной статье информация во многом окажется полезной для читателя, ведь выбор современного жесткого диска во многом определяются не только его внутренними характеристиками, такими, как емкость, объем кэш-памяти, скорость доступа и вращения, но и тем интерфейсом, для которого он был разработан.

Здравствуйте! В мы с вами в подробностях рассмотрели устройство жесткого диска, но я специально ничего не сказал про интерфейсы - то есть способы взаимодействия жесткого диска и остальных устройств компьютера, или если еще конкретней, способы взаимодействия (соединения) жесткого диска и компьютера.

А почему не сказал? А потому что эта тема - достойна объема никак не меньшего целой статьи. Поэтому сегодня разберем во всех подробностях наиболее популярные на данный момент интерфейсы жесткого диска. Сразу оговорюсь, что статья или пост (кому как удобнее) в этот раз будет иметь внушительные размеры, но куда деваться, без этого к сожалению никак, потому как если написать кратко, получится совсем уж непонятно.

Понятие интерфейса жесткого диска компьютера

Для начала давайте дадим определение понятию "интерфейс". Говоря простым языком (а именно им я и буду по-возможности выражаться, ибо блог то на обычных людей рассчитан, таких как мы с Вами), интерфейс - способ взаимодействия устройств друг с другом и не только устройств. Например, многие из вас наверняка слышали про так называемый "дружественный" интерфейс какой-либо программы. Что это значит? Это значит, что взаимодействие человека и программы более легкое, не требующее со стороны пользователя большИх усилий, по сравнению с интерфейсом "не дружественным". В нашем же случае, интерфейс - это просто способ взаимодействия конкретно жесткого диска и материнской платы компьютера. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически - это шлейф (кабель, провод), с двух сторон которого находятся входы, а на жестком диске и материнской плате есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс - включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

Ну а теперь самый "сок" сегодняшней статьи, поехали!

Виды взаимодействия жестких дисков и материнской платы компьютера (виды интерфейсов)

Итак, первым на очереди у нас будет самый "древний" (80-е года) из всех, в современных HDD его уже не встретить, это интерфейс IDE (он же ATA, PATA).

IDE - в переводе с английского "Integrated Drive Electronics", что буквально означает - "встроенный контроллер". Это уже потом IDE стали называть интерфейсом для передачи данных, поскольку контроллер (находящийся в устройстве, обычно в жестких дисках и оптических приводах) и материнскую плату нужно было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде "Усовершенствованная технология подсоединения". Дело в том, что ATA - параллельный интерфейс передачи данных , за что вскоре (буквально сразу после выхода SATA, о котором речь пойдет чуть ниже) он был переименован в PATA (Parallel ATA).

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE - и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять одновременно сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу двух устройств, пропускная способность линии делилась пополам. Однако, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей системы в целом. В общем IDE уже устарел морально и физически, по этой причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA) , характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания статьи - является самым массовым для применения в ПК.

Существуют 3 основных варианта (ревизии) SATA, отличающиеся друг от друга пропускной способностью: rev. 1 (SATA I) - 150 Мб/с, rev. 2 (SATA II) - 300 Мб/с, rev. 3 (SATA III) - 600 Мб/с. Но это только в теории. На практике же, скорость записи/чтения жестких дисков обычно не превышает 100-150 Мб/с, а оставшаяся скорость пока не востребована и влияет разве что на скорость взаимодействия контроллера и кэш-памяти HDD (повышает скорость доступа к диску).

Из нововведений можно отметить - обратную совместимость всех версий SATA (диск с разъемом SATA rev. 2 можно подключить к мат. плате с разъемом SATA rev. 3 и т.п.), улучшенный внешний вид и удобство подключения/отключения кабеля, увеличенная по сравнению с IDE длина кабеля (1 метр максимально, против 46 см на IDE интерфейсе), поддержка функции NCQ начиная уже с первой ревизии. Спешу обрадовать обладателей старых устройств, не поддерживающих SATA - существуют переходники с PATA на SATA , это реальный выход из ситуации, позволяющий избежать траты денег на покупку новой материнской платы или нового жесткого диска.

Так же, в отличии от PATA, интерфейсом SATA предусмотрена "горячая замена" жестких дисков, это значит, что при включенном питании системного блока компьютера, можно присоединять/отсоединять жесткие диски. Правда для ее реализации необходимо будет немного покопаться в настройках BIOS и включить режим AHCI.

Следующий на очереди - eSATA (External SATA) - был создан в 2004 году, слово "external" говорит о том, что он используется для подключения внешних жестких дисков. Поддерживает "горячую замену " дисков. Длина интерфейсного кабеля увеличена по сравнению с SATA - максимальная длина составляет теперь аж два метра. eSATA физически не совместим с SATA, но обладает той же пропускной способностью.

Но eSATA - далеко не единственный способ подключить внешние устройства к компьютеру. Например FireWire - последовательный высокоскоростной интерфейс для подключения внешних устройств, в том числе HDD.

Поддерживает "горячу замену" винчестеров. По пропускной способности сравним с USB 2.0, а с появлением USB 3.0 - даже проигрывает в скорости. Однако у него все же есть преимущество - FireWire способен обеспечить изохронную передачу данных, что способствует его применению в цифровом видео, так как он позволяет передавать данные в режиме реального времени. Несомненно, FireWire популярен, но не настолько, как например USB или eSATA. Для подключения жестких дисков он используется довольно редко, в большинстве случаев с помощью FireWire подключают различные мультимедийные устройства.

USB (Universal Serial Bus) , пожалуй самый распространенный интерфейс, используемый для подключения внешних жестких дисков, флешек и твердотельных накопителей (SSD). Как и в предыдущем случае - есть поддержка "горячей замены", довольно большая максимальная длина соединительного кабеля - до 5 метров в случае использования USB 2.0, и до 3 метров - если используется USB 3.0. Наверное можно сделать и бОльшую длину кабеля, но в этом случае стабильная работа устройств будет под вопросом.

Скорость передачи данных USB 2.0 составляет порядка 40 Мб/с, что в общем-то является низким показателем. Да, конечно, для обыкновенной повседневной работы с файлами пропускной способности канала в 40 Мб/с хватит за глаза, но как только речь пойдет о работе с большими файлами, поневоле начнешь смотреть в сторону чего-то более скоростного. Но оказывается выход есть, и имя ему - USB 3.0, пропускная способность которого, по сравнению с предшественником, возросла в 10 раз и составляет порядка 380 Мб/с, то есть практически как у SATA II, даже чуть больше.

Есть две разновидности контактов кабеля USB, это тип "A" и тип "B", расположенные на противоположных концах кабеля. Тип "A" - контроллер (материнская плата), тип "B" - подключаемое устройство.

USB 3.0 (тип "A") совместим с USB 2.0 (тип "A"). Типы "B" не совместимы между собой, как видно из рисунка.

Thunderbolt (Light Peak). В 2010 году компанией Intel был продемонстрирован первый компьютер с данным интерфейсом, а чуть позже в поддержку Thunderbolt к Intel присоединилась не менее известная компания Apple. Thunderbolt достаточно крут (ну а как иначе то, Apple знает во что стоит вкладывать деньги), стоит ли говорить о поддержке им таких фич, как: пресловутая "горячая замена", одновременное соединение сразу с несколькими устройствами, действительно "огромная" скорость передачи данных (в 20 раз быстрее USB 2.0).

Максимальная длина кабеля составляет только 3 метра (видимо больше и не надо). Тем не менее, несмотря на все перечисленные преимущества, Thunderbolt пока что не является "массовым" и применяется преимущественно в дорогих устройствах.

Идем дальше. На очереди у нас пара из очень похожих друг на друга интерфейсов - это SAS и SCSI. Похожесть их заключается в том, что они оба применяются преимущественно в серверах, где требуется высокая производительность и как можно меньшее время доступа к жесткому диску. Однако, существует и обратная сторона медали - все преимущества данных интерфейсов компенсируются ценой устройств, поддерживающих их. Жесткие диски, поддерживающие SCSI или SAS стоят на порядок дороже.

SCSI (Small Computer System Interface) - параллельный интерфейс для подключения различных внешних устройств (не только жестких дисков).

Был разработан и стандартизирован даже несколько раньше, чем первая версия SATA. В свежих версия SCSI есть поддержка "горячей замены".

SAS (Serial Attached SCSI) пришедший на смену SCSI, должен был решить ряд недостатков последнего. И надо сказать - ему это удалось. Дело в том, что из-за своей "параллельности" SCSI использовал общую шину, поэтому с контроллером одновременно могло работать только лишь одно из устройств, SAS - лишен этого недостатка.

Кроме того, он обратно совместим с SATA, что несомненно является большим плюсом. К сожалению стоимость винчестеров с интерфейсом SAS близка к стоимости SCSI-винчестеров, но от этого никак не избавиться, за скорость приходится платить.

Если вы еще не устали, предлагаю рассмотреть еще один интересный способ подключения HDD - NAS (Network Attached Storage). В настоящее время сетевые системы хранения данных (NAS) имеют большую популярность. По сути, это отдельный компьютер, этакий мини-сервер, отвечающий за хранение данных. Он подключается к другому компьютеру через сетевой кабель и управляется с другого компьютера через обычный браузер. Это все нужно в тех случаях, когда требуется большое дисковое пространство, которым пользуются сразу несколько людей (в семье, на работе). Данные от сетевого хранилища передаются к компьютерам пользователей либо по обычному кабелю (Ethernet), либо при помощи Wi-Fi. На мой взгляд, очень удобная штука.

Думаю, это все на сегодня. Надеюсь вам понравился материал, предлагаю подписаться на обновления блога, чтобы ничего не пропустить (форма в верхнем правом углу) и встретимся с вами уже в следующих статьях блога.

Со времени создания персональных компьютеров было разработано несколь­ко типов интерфейсов для подключения жестких дисков. Два первых интерфейса – ST-506/412 (фирмы Seagate Technologies) и ESDI (Enhanced Small Device Interface - усовершенствованный интерфейс малых устройств) в настоящее время не используются. Развитие интерфейсов шло по пути объединения кон­троллера и накопителя на жестких дисках, что позволило повысить скорость обработки данных, плотность размещения данных на носи­теле и общее быстродействие системы. Поскольку современные интерфейсы используются для обмена данными не только с жесткими дисками, но и другими устройствами внешней памяти (например, оптическими дисководами или накопителями на магнитной ленте) их правильнее называть интерфейсами внешней памяти.

В настоящее время используются два интерфейса внешней памяти: IDE (ATA) и SCSI.

Наиболее распространенным интерфейсом внешней памяти на IBM-совместимых компьютерах является стандарт IDE (IDE расшифровывается как intelligent drive electronics – интеллектуальная электроника устройства или integrated drive electronics – интегрированная электроника устройства). Другое, официальное, название интерфейса – АТА (AT Attachment – подключение к AT), поскольку этот интерфейс впервые был применен в компьютерах серии IBM PC AT.

Стандарты на интерфейс ATA в настоящее время разрабатываются комитетом T13 Международного комитета по стандартам информационных технологий – INCITS (InterNational Committee on Information Technology Standards), в который в основном входят специалисты из фирм, разрабатывающих и производящих устройства внешней памяти (дисководы жестких и оптических дисков). После разработки стандарты утверждаются Американским национальным институтом стандартов – ANSI (American National Standards Institute), под руководством которого функционирует INCITS.

Интерфейс ATA – это интерфейс системного уров­ня, в котором контроллер выполнен в виде микросхемы, установленной на плате накопителя. Стандарт определяет разъемы и кабели для подключения устройств внешней памяти к материнской плате, характеристики сигналов, набор исполнительных регистров, а также команды и протоколы, используемые в устройстве внешней памяти.

Официально принятым в настоящее время стандартом является шестая версия стандарта ATA – ATA/ATAPI-6 (2002 г.) и седьмая версия стандарта ATA – ATA/ATAPI-7 (2004 г.). В конце 2008 г. принят очередной стандарт ATA – ATA/ATAPI-8.

Начиная с версии ATA-4, в спецификацию ATA включена спецификация ATAPI (АТ Attachment Packet Interface – пакетный интерфейс ATA), ранее являвшаяся отдельной спецификацией. Эта спецификация обеспечивает общий интерфейс не только для жестких дисков, но и других устройств: оптических дисководов и стримеров.


В стандартах определены:

· общие требования к устройству ATA;

· регистры ввода-вывода устройства;

· набор команд устройства;

· протоколы обмена данными между устройством и компьютером.

В спецификации определена также технология анализа и вывода мониторинга – SMART (Self-Monitoring Analysis and Reporting Technology), что сделало устройства IDE более надежными. Была добавлена также защита с помощью паролей при доступе к устройствам. Кроме того, предусмотрен режим экономии электроэнергии: двигатель жесткого диска сам останавливается при отсутствии обращения к диску в течение временного интервала, определяемого пользователем системы.

В спецификациях АТА предусмотрено несколько режимов быстрого обмена данными с жесткими дисками, которые называются режимами про­граммного ввода/вывода PIO (Programmed Input/Output) со скоростями передачи данных 3,3-20 Мбайт/с. Эти режимы обеспечивают обмен между оперативной памятью и жесткими дисками с участием процессора.

С появлением процессоров Pentium контроллеры АТА обеспечивают функцию Bus Master. В этом режиме процессор указывает контроллеру АТА, откуда он должен взять данные, и в какую область оперативной памяти их поместить. После этого контроллер захватывает управление шиной PCI и выполняет операции ввода-вывода без участия процессора. Этот режим называется режимом прямого доступа в память – DMA (Direct Memory Access). Особенно заметны преимущества режима Bus Master при одновременной работе нескольких приложений.

Контроллер АТА имеет два канала (primary – первичный и secondary – вторичный), к каждому из которых с помощью одного кабеля можно подключить до двух устройств (всего четыре устройства). Чтобы два устройства могли работать на одном кабеле используется режим «хозяин-слуга» («master-slave»). Устройство на первичном канале – «хозяин» разрешает выполнять обмен данными устройству на вторичном канале – «слуге» только в том случае, если «хозяин» не занят обменом данных, поэтому каждый раз, когда устройству, подключенному к вторичному каналу, необходимо выполнить обмен данными, оно обращается за разрешением к устройству на первичном канале. Подключение двух устройств к одному кабелю и, соответственно, к одному порту ввода-вывода называют параллельным ATA (Parallel ATA – P-ATA). В спецификации ATA/ATAPI-7 определен режим Ultra ATA/133, который обеспечивает режим обмена данными до 133 Мбайт/с.

В спецификации ATA определены два типа кабеля: старый, 40-разрядный и новый, 80-разрядный, обеспечивающий более высокую скорость передачи – в режиме Ultra DMA – до 66,67 Мбайт/с (рис 1.3.7а). В старом и новом кабели используются одинаковые 40-контактные разъемы, однако внутренняя разводка проводников в этих кабелях различна. Электронная схема устройства автоматически определяет, какой тип кабеля подключен, и в соответствии с этим определяет максимальную скорость передачи данных.

Для подключения устройств IDE (ATA) к материнской плате используются два вида кабелей: шинный кабель и круглый кабель. Цвета разъемов в кабелях фиксированы: синий разъём предназначен для подключения к материнской плате, чёрный – к устройству на первичном канале, серый – к устройству на вторичном канале (рис. 1.3.7б). Разъем для подключения кабеля IDE (ATA) на материнской плате приведен на рис. 1.3.7в, а разъем для подключения кабеля IDE (ATA) на устройстве – на рис. 1.3.7г.

Рис. 1.3.7. Интерфейс IDE (ATA): а) сравнение 80-разрядного кабеля (сверху) и 40-разрядного кабеля (снизу); б) подключение шинного и круглого кабеля (1 – к вторичному устройству; 2 – к первичному устройству; 3 – к материнской плате или контроллеру)

в) разъем для подключения кабеля на материнской плате;

г) разъем для подключения кабеля на устройстве

В отличие от интерфейса IDE (ATA), в котором данные передаются параллельно, интерфейс последовательного ATA – SATA (Serial ATA) реализует последовательную передачу данных на двух витых парах. Так же, как в шине PCI Express, этот обмен реализуется с помощью метода LDVS.

Первая версия SATA (SATA I) была определена в 2002 г. в спецификации ATA/ATAPI-7 комитета T13.

В этой версии шина SATA работает на частоте 1,5 ГГц. Реальная пропускная способность шины несколько меньше (из-за используемого метода кодирования данных) и составляет 1,2 Гбит/с или 150 Мбайт/с.

В 2003 г. Рабочая группа Serial ATA (Serial ATA Working Group) комитета T13 начала разработку спецификации SATA II, также называемую SATA 2. На основе этой группы в 2004 г. была создана неприбыльная Международная организация по Serial ATA – SATA-IO (Serial ATA International Organization), которая в настоящее время определяет основные направления и концепции развития интерфейса SATA. Последняя редакция спецификации SATA II – спецификация последовательного ATA редакция 2.6 (Serial ATA Revision 2.6 Specification) была выпущена в 2007 г. Эту спецификацию называют также SATA 2.6.

В SATA II за счет увеличения частоты до 3 ГГц была добавлена скорость передачи данных 300 Мбайт/с. Кроме этого, в качестве необязательного компонента в SATA II была добавлена технология аппаратной установки очередности команд – NCQ (Native Command Queuing). Устройства с поддержкой NCQ могут принимать одновременно несколько запросов на обмен данными, в отличие от параллельного ATA и SATA I. Очередность выполнения запросов определяется с учетом минимизации общего времени доступа к данным, что особенно существенно при одновременном выполнении на компьютере нескольких программ. Необязательной возможностью в SATA II является также «горячее» подключение устройств.

В 2009 г. SATA-IO приняло новую спецификацию SATA – спецификацию последовательного ATA редакции 3.0 (Serial ATA Revision 3.0 Specification), называемую также спецификацией SATA III или спецификацией SATA 3.0. В этой спецификации добавлена скорость передачи данных 600 Мбайт/с (при увеличении частоты до 6 ГГц). Помимо этого, в NCQ добавлен режим изохронной передачи для мультимедийных приложений, улучшено управление электропитанием устройств, добавлены два новых разъема для устройств небольших размеров.

Передача данных в SATA выполняется по 7-проводному кабелю (4 провода витых пар, 2 провода заземления на каждую пару и провод общего заземления). Каждое устройство подключается к материнской плате с помощью своего кабеля и разъемов (рис. ????а). Максимальная длина кабеля SATA – 1 м. За форму, похожую на букву L, разъем SATA иногда называют L-разъемом.

Для передачи данных и подведения электропитания используется 22-проводный кабель SATA (7 проводов для данных и 15 – для электропитания) (рис. ????б).

В редакции SATA 2.6 был введен 16-проводной внутренний разъем Micro SATA для жестких дисков малых размеров (рис. ????в) и 13-проводной внутренний разъем Slimline SATA для оптических дисководов малой толщины типа Slim (тонкий) (рис. ????г).

В настоящее время подавляющее большинство моделей дисководов жестких дисков, твердотельных дисков и оптических дисководов в системном корпусе подключаются к компьютеру с использованием интерфейса SATA.

Рис. ?????. Интерфейсы SATA: а) 7-проводной интерфейс SATA: 1 – кабель; 2 – гнездо на материнской плате; 3 – гнездо в устройстве; б) 22-проводной интерфейс SATA:

1 – кабель; 2 – контакты данных; 3 – контакты электропитания; 4 – гнездо в устройстве;

в) 16-проводной штекер Micro SATA: 1 – контакты данных; 2 – контакты электропитания; 3 – гнездо в устройстве; в) 13-проводной штекер Slimline SATA: 1 – контакты данных;

2 – контакты электропитания; 3 – гнездо в устройстве

Для подключения внешних устройств к компьютеру по интерфейсу SATA организация SATA-IO разработала технологию внешнего SATA – eSATA (external SATA).

В eSATA устройства подключаются к компьютеру по шине PCI или PCI Express через карту расширения eSATA (рис. ????а) , содержащую контроллер eSATA и гнезда для подключения внешних устройств (рис. ????б). Кабель eSATA для подключения устройств (рис. ????в) так же, как кабель SATA, имеет 7 проводов с теми же назначениями. В отличие от кабеля SATA, кабель eSATA экранирован и поэтому максимальное значение длины для него составляет 2 м. Разъемы eSATA (I-разъемы) отличаются от L-разъемов SATA как по форме, так и по размеру.

Количество подключаемых внешних устройств определяется количеством разъемов на карте расширения eSATA. Для подключения большего количества устройств можно использовать либо вторую карту расширения, либо концентраторы eSATA (рис. ????г). Пример подключения внешних устройств к компьютеру при использовании технологии eSATA приведен на (рис. ????д).

Разрабатываемая SATA-IO технология xSATA предусматривает увеличение длины кабеля для подключения устройства до 8 м, что позволит создавать сети SATA.

Рис. ?????. Средства подключения устройств по интерфейсу eSATA: а) кабель eSATA;

б) гнездо подключения устройства eSATA; в) карта расширения eSATA для двух устройств с интерфейсом PCI Express: 1 – гнезда для подключения

внешних устройств; 2 – контроллер eSATA; г) концентратор eSATA: 1 – гнезда для подключения устройств; 2 – гнездо электропитания; 3 – гнездо для подключения к компьютеру; д) пример подключения внешних устройств по интерфейсу eSATA (медиаплеера и, через концентратор, устройства внешней памяти, содержащего два жестких диска с интерфейсом eSATA)

Предназначается "оригинальный" интерфейс АТА исключительно для подключения HDD, в нем не поддерживаются такие возможности, как интерфейс ATAPI для подключения устройств IDE, которые отличны от HDD, т.е. режим передачи blockmode или LBA (сокр. от logical block addressing).

Спустя некоторое время стандарт АТА перестал соответствовать возрастающим потребностям, т.к. вновь выпускаемые HDD требовали значительно большей скорости трансфера данных, а также наличия новых возможностей. Таким образом появился на свет АТА-2 интерфейс, вскоре также стандартизированный ANSI. При сохранении взаимосовместимости со стандартом ATA, в ATA-2 появилось несколько дополнительных возможностей:

  • Более быстрые PIO Modes . Добавлена поддержка PIOmodes 3 и 4;
  • Более быстрые DMA Modes . Поддерживается multiword DMAmodes1 и 2;
  • Block Transfer . Были включены команды, которые позволяют осуществлять трансфер в режиме blocktransfer, с целью повышения производительности;
  • Logical Block Addressing (сокр . LBA) . В АТА-2 требуется поддержка HDD протокола передачи LBA. Само собой, чтобы использовать этот протокол, нужно, чтобы он поддерживался также BIOS;
  • Усовершенствованная команда IdentifyDrive . В интерфейсе увеличен объем информации относительно характеристик, выдаваемой HDD по системным запросам.

Все было бы отлично, однако фирмы-производители в своем стремлении заполучить больший кусок рынка начали сочинять красивые названия, обзывая ими интерфейсы своих HDD. Ведь интерфейсы FastATA, FastATA-2, а также EnhancedIDE, по сути, базируются на АТА-2 стандарте, являясь не более чем красивыми маркетинговыми терминами. Различия между ними заключаются лишь в том, какую часть стандарта и каким образом они поддерживают.

Самую большую неразбериху вносят названия FastATA и FastATA-2, которые принадлежат умным головам из Seagate и Quantum соответственно. Вполне логично будет предположить, что FastATA - это своего рода улучшение АТА стандарта, в то время как FastATA-2 основан на стандарте АТА-2. К сожалению, все не так просто. В реальности FastATA-2 лишь другое название АТА-2 стандарта. В свою очередь все отличия FastATA от него сводятся лишь к тому, что здесь поддерживаются самые быстрые режимы, а именно: PIO mode4 и DMA mode2. Обе компании, при этом, нападают на Western Digital и разработанный ею стандарт EIDE за внесение еще большей путаницы. EIDE также отличается своими недостатками, однако, о них чуть позже.

В попытке дальнейшего развития АТА интерфейса был разработан проект стандарта АТА-3, основное внимание в котором уделялось улучшению показателей надежности:

  • В AТА-3 содержатся средства, которые повышают надежность трансфера данных благодаря использованию высокоскоростных режимов, что является серьезной проблемой, т.к. кабель IDE/ATA сохранился неизмененным с момента рождении стандарта;
  • В АТА-3 включена технология SMART.

АТА-3 не утвержден как ANSI стандарт в первую очередь потому, что в нем не было использовано новых режимов трансфера данных, несмотря на то, что технология SMART сейчас достаточно широко используется производителями HDD.

Следующий виток развитии интерфейса IDE/ATA - это стандарт UltraATA (также известный, как UltraDMA либо ATA-33, либо DMA-33, либо АТА-3(!)). UltraATA, по сути, является стандартом использования наиболее быстрого режима DMA - mode3, который обеспечивает скорость трансфера данных в 33.3 МВ/сек. С целью обеспечения надежного трансфера данных по старой модели кабеля используются особые схемы контроля над ошибками и их коррекции. Обратная совместимость с прошлыми стандартами: АТА и АТА-2, при этом, сохраняется. Таким образом, если Вы купили HDD с интерфейсом UltraАТА и вдруг обнаружили, что он не поддерживается вашей системной платой, не расстраивайтесь - накопитель все же будет работать, хотя и несколько медленнее.

Наконец, самое последнее достижение в этой сфере - это интерфейс UltraATA/66, который разработан компанией Quantum. Интерфейс позволяет осуществлять трансфер данных на скорости 66МВ/сек.

Во времена первых разработок IDE/ATA интерфейса, единственным устройством, нуждающимся в этом интерфейсе, был HDD, т.к. зарождающиеся драйвы CD-ROM и стримеры оснащались собственным интерфейсом (вы наверняка помните времена, когда подключение CD-ROM осуществлялось с помощью интерфейса на звуковой карте). Вскоре, однако, стало понятно, что использование быстрого и простого интерфейса IDE/ATA для подключения всех возможных устройств сулит принести значительные выгоды, в т.ч. за счет универсальности. К сожалению, система команд IDE/ATA интерфейса была рассчитана исключительно на HDD, поэтому подключить, к примеру, CD-ROM просто так к IDE-каналу нельзя - он просто не будет работать. Соответственно необходимо было разработать новый протокол - ATAPI (сокр. от ATA Packet Interface). Протокол позволяет большинству других устройств подключаться при помощи стандартного IDE шлейфа и "почувствовать себя" в роли IDE/ATA HDD. Протокол ATAPI, на самом деле, гораздо сложнее, чем ATA, т.к. трансфер данных здесь идет с использованием режимов DMA и PIO, реализация же поддержки этих режимов значительным образом зависит от особенностей подключенного устройства. Само название packet (с англ. пакетный) было получено протоколом из-за того, что команды устройству приходится передавать буквально группами или пакетами. С точки зрения рядового пользователя, однако, важнее всего, что отсутствует различие между IDE/ATA HDD, CD-ROMом ATAPI, а также ZIP-драйвом. Сегодняшние BIOSы даже поддерживают осуществление загрузки с ATAPI-устройств.

Сейчас, как было обещано, переходим к EIDE. Термин этот был введен компанией WesternDigital. EIDE достаточно широко употребляется и практически также широко критикуется, вполне на наш взгляд заслужено. Главной причиной для жесткой критики является тот факт, что, по сути, EIDE - вовсе и не стандарт, а чисто маркетинговый термин, причем содержание этого термина постоянно меняется. Так, сначала EIDE включал поддержку PIO режимов вплоть до mode3, затем была добавлена поддержка mode4. Существенным недостатком EIDE в качестве стандарта является включение в его спецификацию абсолютно разноплановых вещей. Смотрите сами, на данный момент EIDE включает:

  • ATA-2 . Полностью, в т.ч. самые скоростные режимы;
  • ATAPI . Целиком;
  • Dual IDE/ATA Host Adapters . В стандарте EIDE включена поддержка 2-х IDE/ATA хостов, таким образом можно использовать параллельно до 4-х IDE/ATA/ATAPI устройств.

Разберем теперь, что обозначает фраза "HDD с интерфейсом EIDE". Так как поддерживать ATAPI ему нет никакого смысла, а 2 канала IDE он поддержать не сможет, все это сводится к скромному: "HDD с интерфейсом АТА-2". Идея, в принципе, была неплохая- создать стандарт, который охватывает чипсет, BIOS и жесткий диск. Однако так как большая часть EIDE в качестве стандарта относится непосредственно к чипсету и BIOS, то получается путаница между EnhancedIDE и примерно в тоже время возникшей EnhancedBIOS (т.е. BIOS, который поддерживает IDE/ATA для HDD емкостью более 504MB). Вполне логично было бы предположить, что для использования HDD объемом свыше 504МВ необходим интерфейс EIDE, однако, как Вы уже поняли, нужен лишь EnhancedBIOS. Более того, производители карт с EnhancedBIOS рекламировали их в качестве "enhanced IDE cards". К счастью, сейчас эти проблемы остались в прошлом, в прочем, как и барьер 540МВ.

Чтобы как-то систематизировать информацию все основные (официальные и неофициальные) стандарты интерфейса IDE, которые были описаны выше, приведены в форме таблицы.

Стандарт

Интерфейс

DMA modes

PIO modes

Отличия от IDE/ATA

Singleword 0-2; multiword 0

Singleword 0-2; multiword 0-2

Поддержка LBA, block transfer, режим, улучшенная команда identify drive

Маркетинговый термин

Singleword 0-2; multiword 0, 1

Аналогичен АТА-2

Маркетинговый термин

Singleword 0-2; multiword 0-2

Аналогичен АТА-2

Неофициальный

Singleword 0-2; multiword 0-2

Аналогичен АТА-2, при этом добавлена поддержка надежности трансфера на высоких скоростях, используется технология SMART

Неофициальный

Singleword 0-2; multiword 0-3 (DMA-33/66)

Аналогичен АТА-3

Singleword 0-2; multiword 0-2

Аналогичен АТА-2, добавлена поддержка отличных от HDD устройств

Маркетинговый термин

Singleword 0-2; multiword 0-2

Аналогичен ATA-2 +ATAPI, поддерживает 2 хост-адаптера

Плавно переходим к не менее интересной теме. Всего существуют 2 параметра, которые характеризуют скорость трансфера данных при использовании HDD с интерфейсом IDE/ATA. Первый из них - внутренняя скорость передачи (англ. internal transfer rate), характеризующая скорость трансфера данных между внутренним буфером HDD и магнитным носителем. Она определяется скоростью вращения, плотностью записи и т.д. Т.е. параметрами, зависящими не от типа интерфейса, а от конструкции носителя. Второй показатель - это внешняя скорость трансфера данных, т.е. скорость передачи данных по IDE каналу, полностью зависящая от режима передачи данных. В самом начале использования IDE/ATA дисков скорость работы всей дисковой подсистемы зависела от внутренней скорости трансфера данных, которая была значительно меньше внешней. Сегодня же, благодаря увеличению плотности записи (это позволяет снимать больше данных за оборот диска) и увеличению частоты вращения, главенствующую роль занимает внешняя скорость передачи. В связи с этим возникает вопрос относительно номеров режимов и отличия PIO от DMA.

Первоначально распространенным способом трансфера данных посредством интерфейса IDE/ATA был протокол, который носит название Programmed I/O (сокр. PIO). Всего существует 5 режимов PIO, которые различаются по максимальной скорости пакетной передачи данных (англ. burst transfer rates). Режимы эти называются термином PIO modes.

Разумеется, здесь имеется в виду внешняя скорость трансфера данных, определяемая скоростью интерфейса, а не HDD. Следует также учитывать, хоть сегодня это вряд ли актуально, что PIO modes 3 и 4 нуждаются в использовании шины PCI либо VLB, т.к. ISA шина не способна обеспечивать скорость трансфера данных более 10 МВ/сек.

Вплоть до появления DMA-33 режима, максимальная скорость трансфера данных у PIO и DMA была идентичной. Основным недостатком PIO режимов считается то, что трансфером данных управляет процессор - это значительно увеличивает его загрузку. С другой стороны, эти режимы не нуждаются в специальных драйверах и прекрасно подходят для однозадачных ОС. К сожалению, это, скорее всего, вымирающий вид…

Direct Memory Access (сокр. от DMA) - прямой доступ к памяти - обозначает собирательное название протоколов, которые позволяют периферийному устройству передавать данные в системную память непосредственно без участия ЦП. Современными жесткими дисками эта возможность используется в сочетании с возможностью, перехватывая управление шиной, самостоятельно управлять передачей данных (т.н. bus mastering). Существующие режимы DMA (т.н. DMAmodes) приведены в таблице. Следует отметить, что singleword режимы на сегодняшний день более не используются, они приведены исключительно для сравнения.

Максимальная скорость трансфера (МВ/сек)

Поддерживают стандарты:

ATA-2, FastATA, FastATA-2, ATA-3, UltraATA, EIDE

ATA-2, FastATA-2, ATA-3, UltraATA, EIDE

Multiword 3 (DMA-33)

UltraATA (АТА/66)

Еще одной интересный момент относительно работы интерфейса IDE/ATA - это 32-разрядный доступ к HDD. Как Вы уже знаете, интерфейс IDE/ATA всегда был и остается по сей день 16-битным. В таком случае будет уместен вопрос, почему при выключении драйверов 32-разрядного доступа к HDD в Windows скорость работы этого диска падает? В первую очередь, потому что работа Windows, в принципе, далека от совершенства. Во-вторых, PCI шина, на которой сейчас располагаются host-контроллеры IDE, 32-разрядна. Следовательно, 16-битный трансфер по этой шине есть пустое расходование пропускной способности. Host-контроллер в нормальных условиях формирует из 2-х 16-битных пакетов 32-битный, пересылая его в дальнейшем по PCI шине.

Ранее встречался такой термин, как режим blocktransfer. Здесь ничего сложного. На самом деле этот термин просто обозначает режим, позволяющий передавать определенное число команд чтения/записи за время одного прерывания. Современные IDE/ATA HDD позволяют передавать 16->32 секторов за одно прерывание. Так как прерывания генерируются реже, загрузка процессора снижается, а также уменьшается процент команд в общем количестве передаваемых данных.

Каждый канал IDE позволяет подключить к нему одно либо два устройства. Современные компьютеры, как правило, отличаются установкой двух каналов IDE (в соответствии со спецификацией EIDE), несмотря на то, что теоретически возможно устанавливать до четырех (!), что позволяет осуществлять подключение восьми IDE устройств. Все IDE каналы являются равноправными. В таблице приведено использование системных ресурсов различными каналами.

Канал

I/O Addresses

Поддержка, возможные проблемы, возникающие при использовании

1F0-1F7h, а также 3F6-3F7h

Используется в любых компьютерах, оснащенных интерфейсом IDE/ATA

170-177h, а также 376-377h

Распространен широко, присутствуя практически во всех современных ПК.

1E8-1Efh, а также 3EE-3Efh

Редко используется. Возможны определенные проблемы с софтом

168-16Fh, а также 36E-36Fh

Используется крайне редко. Проблемы с софтом весьма вероятны

Ресурсы, которые используются третьим и четвертым каналами, обычно конфликтуют с другими устройствами (к примеру, IRQ 12 используется PS/2 мышью, IRQ 10 - традиционно занят сетевой картой).

Как уже было отмечено, каждый IDE/AТА канал интерфейса поддерживает подключение 2-х устройств, а именно: master и slave. Конфигурация задается обычно перемычкой, располагающейся на задней стенке устройства. Помимо этих двух позиций на ней часто присутствует также третья - cableselect. Что произойдет, если перемычку установить в это положение? Оказывается, для функционирования устройств в положении cableselect перемычки необходим специальный Y-образный шлейф, у которого центральный разъем подключается непосредственно к системной плате. У такого рода кабеля крайние разъемы неравноправны - устройство, которое подключено к одному разъему, автоматическим образом определяется, как master, а к другому, соответственно, как slave (аналогично А и В флопам). Перемычки на обоих устройствах, при этом, должны находиться в положении cableselect. Основной проблемой этой конфигурации является то, что она экзотична, несмотря на то, что де-юре считается стандартной, а значит, поддерживается не всеми. Из-за этого Y-образный шлейф достать очень трудно

Если предположить, что, несмотря на экзотику, Вы все-таки будете использовать описанную конфигурацию IDE/ATA устройств, запомните следующее:

  • В каждый момент каждый канал может обрабатывать лишь один запрос и лишь к одному устройству. То есть следующему запросу, даже к другому устройству, придется ждать завершения текущего. Различные каналы, при этом, могут функционировать независимо. Следовательно, не стоит подключать 2 устройства, которые активно используются (к примеру, два HDD), к одному каналу. Оптимальным вариантом будет подключение каждого IDE-устройства к отдельному каналу (это, пожалуй, главный минус по сравнению с SCSI).
  • Практически все чипсеты на сегодняшний день поддерживают возможность использования разных режимов трансфера данных для устройств, которые подключены к одному каналу. Злоупотреблять этим, однако, не стоит. Два устройства, которые значительно различаются по скорости, рекомендуется разнести по различным каналам.
  • Также рекомендуется не подключать HDD и ATAPI-устройство (к примеру, CD-ROM) к одному каналу. Как было указано выше, ATAPI протокол использует иную систему команд, и, более того, даже самые скоростные ATAPI-устройства намного медленнее HDD, что может существенно замедлить работу последнего.

Вышесказанное, разумеется, нельзя считать аксиомой - это лишь рекомендации, которые основаны на здравом смысле и опыте экспертов. Кроме того, здравый смысл и опыт говорит о том, что четыре IDE-устройств на исправной плате могут работать в любых сочетаниях и при минимальных затрачиваемых усилиях со стороны пользователя, если соблюдать требования по совместимости. В этом и заключается главное преимущество IDE перед SCSI.


© 2024
slushat-audioskazki.ru - Компьютерные подсказки - Это полезно знать